
HOW TO USE THE PHYSICS
DESIGN ENVIRONMENT

GUIDE



User guide

Contents
Introduction 3

Authentication 3
First login 4

Create 4

Base flow 5
PHYSICS Provided Palette of Patterns and Helper Flows 6
PHYSICS Semantic Annotator Nodes 7
Extending the palette with external Node-RED nodes 7
Customization of the Dockerfile for External Dependency Inclusion 8

Charts 8
First login 9

Step one 10
Step two 10
Step tree 11
Step four 11
Step five 12

Builds 12
Start a build 13

Tests 14
Request a test 16

Local platform (Openwhisk) 17

Performance 18
View of Performance Pipeline Results in the Dashboard 19

Imports 20

Start the import 21

Exports 23
Preparatory work 24
Final export process to npm and Node-RED repos 25

Application Graphs 27
Create a new Application Graph 28
Inclusion of an imported image to an Application Graph 28

Log 29
Flow Update Process 30
FAQs and Common Errors 33

Step 1: Start the environment locally 33
STEP 2: Work in the environment and try to test deploy on OW 35
OPTIONAL STEP: Customize the baseline environment image 35
Troubleshoot 36
Update images of Design Environment 37
Potential build fail when changing flows 37
Potential Break of the git updates 38

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 1



User guide

Subflow in Subflow 38
Memory considerations of invoked action 38
Size of output message 39
Update of Base Image 40
Git Dubious Ownership error 40
Subflow id not iterable 41
Multiple /run Endpoints in Node-RED 41

Parallelization Strategies 41

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 2



User guide

INTRODUCTION
In the following document will be explained how to use the visual interface deployed on
cloud that require a internet connection and a Chrome browser v.118 o sup. The
interface is available on URL https://control-ui.apps.ocphub.physics-faas.eu/.

There's also a downloadable version that needs a local docker installation, you can find
the process of the installation in the dedicated chapter “Install local version”; keep in
mind that the layout is different between the two versions, but the main features are
almost the same.

The Interface, is compose by four parts
● Top bar: where you can switch between the light and dark mode and the user

icon, which when pressed shows the logged user name, a link to download the
last version of this guide and the logout button .

● Left menu: a rail menu for moving in all the available sections of the interface.
● Bottom line: if pressed showed a panel with the user backend log.
● Main: the center of the page that shows the content of the opened section.

In the following chapter we deep dive into each section and the log.

Authentication

For access, the GUI requires a valid user account on Physics platforms. If you don't have
a valid user, you can create yourself by accessing the interface
(https://control-ui.apps.ocphub.physics-faas.eu/) creations user, please contact the
system administrator to get it.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 3

https://control-ui.apps.ocphub.physics-faas.eu/
https://control-ui.apps.ocphub.physics-faas.eu/


User guide

First login

On the first login you will guide through two manual steps to provisioning your personal
environment. The first one requires first access to the Physics versioning system with
your user account and the second is the requesting of your password to start the
creation of your personal environment. The first login takes approximately 4 minutes,
the next login requires only the time to start up your environment.

It's warmly recommended to enable the browser notifications, to receive notifications of
completed builds so you don't need to keep the page open to check the end of the job.

CREATE

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 4



User guide

In the create section you can use your personal Node-red that is a programming tool for
wiring together hardware devices, APIs and online services in new and interesting
ways.1 This tool permits the creation of a flow in a block code way, each block is declared
as a node, that it can be an atomic custom function written in javascript or python, a
prebuilt node (es. Access a db) and a reference to a subflow or to another flow.

For more information about node-red environments please refer to the official guide on
https://nodered.org/docs/.

Base flow

Each flow, to be running on physics environments, needs to include two http in node,
configured in POST method and respectively with URL /init and /run, below is reported
a basic physics flow. A helper subflow is available in the PHYSICS patterns palette (OW
Skeleton node), the contents of which appear below, including instructions on how the
arguments are passed from Openwhisk as well as what type of response is needed.
Adding an error node helps in better debugging your flows. Be aware that if you want to
add an “error” field in the response, this will be translated by Openwhisk as an
erroneous execution and will appear as such in the Openwhisk activation results.
Therefore if one needs to add some extra info on partial errors noticed within an
execution, they should use some other notation for the error field in the JSON response.

In the flow is present the following node:
● 2 http in: as described before is needed for the physics environment
● 1 function: where is present the business logic of this flow
● 2 http response: for close the session of the flow
● 1 comment: an example node where you can insert some comment
● 1 custom node: the Executor Mode, is one of the custom node made for the

physics environment

1 Node-RED (nodered.org)

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 5

https://nodered.org/docs/
https://nodered.org/


User guide

For more information about the standard node or the available node downloadable from
node-red repository please refer to the official node-red documentation.

Important notice 1: within the PHYSICS platform, the branch name of the developer
as well as the flow name are used to create unique identifiers for a function. Thus if one
creates such a flow and then goes through various stages like the performance pipeline,
all the results and filters will be based on the flow+branch name attributes. Therefore it
is recommended that the flow name is not changed during development or if it is, then
the developer should repeat the stages involving usage of these attributes as filters
(such as the performance statistics of a function).

Important notice 2: due to the K8s naming conventions, refrain from using capital
letters or special characters like underscores in flow names. K8s will automatically
lowercase and replace “_” with “-”.

PHYSICS Provided Palette of Patterns and Helper Flows

The Design Patterns aim at offering reusable and
parametric operational capabilities to the developers in
order to enable an easier and more abstracted flow
creation process. Patterns have been created for
workflow enhancement, load distribution, message
manipulation etc. In the final version, new patterns have
been included in order to automate aspects such as
routing between available endpoints, dynamic
orchestration of functions etc.

Each pattern or subflow/node comes with its own
specification in relation to its usage. The interfaces are
through the fields of the incoming message to the subflow.
The information is included in each pattern
documentation to be directly accessible in the Node-RED
environment by the developer. Once dragged inside a flow
and selected, the documentation appears by selecting the
relevant icon in the right Node-RED panel side. This
documentation includes the specification of the incoming
messages as well as configuration information. Most of
the patterns are configurable also through the UI. The
incoming messages values however prevail over the
manually set UI values for enabling more dynamic
configuration.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 6



User guide

This type of distribution has the benefit that the developer can also edit the subflow
template, meaning that they can change some part of the pattern implementation to
better suit their needs. On the other hand, it means that the developer needs to have
pre-installed any external dependency (e.g. a Node-RED node that is not in the default
Node-RED environment).

PHYSICS Semantic Annotator Nodes

At the flow level, a special set of nodes (semantic annotators) has been created as
subflows and included in the Node-RED palette. Node-RED offers the ability to create
subflows, in which one can define the required fields (e.g. in a UI format). These fields
are included as subflow properties and environment variables. Various nodes have been
implemented up to this point in order to address one or more categories of annotations
needed at the flow level that give directives to the underlying management layers. Each
of the semantic nodes is also accompanied by a relevant README file accessible in the
Node-RED environment. Through these nodes the developer can dictate needs for
function sizing, locality preferences, optimization preferences etc.

Extending the palette with external Node-RED nodes

Node-RED comes with a wide extension of available open source nodes2. In order for the
developer to use one, they first need to install them through the typical Node-RED UI

2 https://flows.nodered.org/

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 7

https://flows.nodered.org/


User guide

process. Once installed inside the Design Environment, they can use them inside their
flows. Upon building of the function image, the imported dependencies will be
automatically included in the image so that it is directly operational when executing
inside Openwhisk.

First login

On the first login, for a security purpose, it is required to set the username and the
password in some subflow on the “Visualization - Dashboard” flow you can find in
Node-RED on section Create.

Keep aware to not delete the flow “Visualization - Dashboard”.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 8



User guide

Step one

Open the flow “Visualization - Dashboard” in Create section

Step two

Click two time on “Pofile Dashboard (2)” and then open “Edit subflow template”

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 9



User guide

Step tree

Click two times on the http request block. In the panel set admin as Username and
bigds as Password then click on Done.

Step four

Click on Deploy button and you will see a pop up that confirm the successfully deploy

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 10



User guide

Step five

Repeat the step from two to four for the block “Prometheus Dashboard (2)” and “Load
Gen Dashboard (2)”.

BUILDS
In the builds section, is shown the list of the flows present on your Node-RED and your
deleted flow if you are made at least one build of it, for each flow is also present the
related artifacts. It also presents a search bar to filter the flows.

When pressed on a flow, it is showing the related available artifact, with the following
information in this order for each artifact:

● Action name: the name of the Openwhisk action associated to the artifact
● Image: the position of the container created in the build process
● Build date: the date of the requested build

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 11



User guide

Start a build

To start the build process, open the flow and press the build button (or rebuild if is
already present an artifact of the flow)

After the build starts you can see the state of the process on jenkins pipeline or you can
access on jenkins pipeline with the link “Link to jenkins job”.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 12



User guide

The deploy consists of the following workflow, where after that it will be created an
action name to call the function on the serverless platform in the test section.

In the diagram flow is present all the custom components involved in the deployment
process with the numbered sequence. The main component that orchestrate all the
process is a jenkins3 pipeline.

TESTS
In this section you can test the function deployed, to see if it works as expected or to get
performance data.

In the main section is reported a filterable list of all your runned tests, if you click on one
of them, it is reported the result of the test with the parameter used to run it.

3 Jenkins is an open source automation server. It helps automate the parts of software development related to building, testing, and
deploying, facilitating continuous integration and continuous delivery. (Jenkins (software) - Wikipedia)

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 13

https://en.wikipedia.org/wiki/Jenkins_(software)


User guide

It is also available in the test report, the buttons to delete the test or to request a new
test with the same data in input.

Each test on the list have one of the following status icon:

The test is running

The test is successfully completed

The test is finished with an error

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 14



User guide

Request a test

To request a new test you can use the plus button in rail menu (1) or you can request a
new test with the same parameters as one already made with the button Repeat (2).

The user can select a function in the list filled with the action present in the local
serverless platform. After the selection of the function you can choose to perform the
test on the local platform (Openwhisk Test) with a focus on the functionality or to get
the performance data.

After the choice of the test and the settings of the parameters (described in the following
chapter) you can start the test with the Execute button.

After the Execution in the main page you will find a new entry for the running test. At
the completion of the test you can see the result.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 15



User guide

Local platform (Openwhisk)

In case of selection of Openwhisk in addition to the action you will only have to define
the input parameters if necessary.

Performance Test

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 16



User guide

In case of performance testing you can also select:
● Clusters: drop list with the local and remote platform where you can run your

function
● Function memory (optional): the number of the maximummemory can be used

by the function during the execution
● Test duration: the maximum duration of the test

The list in clusters is retrieved in mongoDB on the document cluster. In case you want
to add a new remote serverless platform you can made a request to the administrator
with the following information:

● Label to associate to the platform
● The url of the remote serverless platform
● The username and the password to access the remote platform

The username and the password will be encrypted in jenkins, where in the database will
be stored only the id of the encrypted jenkins key.

View of Performance Pipeline Results in the Charts Dashboard

In the Charts section you can retrieve the performance measurement of the
Performance test, it is also available in the burger menu the performance for the
running flow on the PHYSICS FaaS Platforms under the section “Prometheus
Visualization”. Following the execution of the performance pipeline, the user can view
the results in their Charts tab of the dashboard.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 17



User guide

In the Profiles selection they can view the relative classification of a function regarding
its usage of CPU, Memory, Network and Filesystem resources.

In the Prometheus Visualization, they can investigate the absolute usage of the
resources by a given function.

Furthermore, they can compare a single resource used (e.g. memory) from all their
functions that have undergone the Performance test.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 18



User guide

While in the Load Gen tab, they can view the top level information (average function
duration, wait time, total user side delay) of the executions, as well as the experiment
progression.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 19



User guide

IMPORTS

Section dedicated to importing external images and where you can see the history and
status of the imported images, you can import an external image from a remote
repository, and define for it an action name, which can then be used to run the image in
the test section.

The format of the action name following the convention
custom-action-name_<user-name>_uuid

Where custom-action-name is set by the user, user-name is the name of the logged-in
user and uuid is generated automatically from the UI.

After the user requests for an import the DE calls the jenkins pipeline with the
parameters set by the user. After the request, the user can monitor the state of the
import directly from the page of import in the DE, where is report the history of all user
imported image, with the action name associated, the date of the import request and the
state represented by the following icon

The image is successfully imported and the
action is active on openwhisk.

The image was successfully imported but a
new version of the docker image with the
same version was imported so the action on
openwhisk is no longer available.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 20



User guide

There was an error during the import, the
image is not imported and the action was not
created on openwhisk

The import is in queue

The import image is in progress

For the security purpose, the user credential to access the remote repository is stored
encrypted on Jenkins with a user custom label, that it can be visible only from the user
who created it and it can be reused for future import.

Start the import

The import can be a new import with the plus button (1) or it can be an upload of a
previous one with the Update button (2).

The main difference between the two types is that in the update, you can only change
the imported image data but not the action name associated, so in case you have a new
version of the image you don't need to update all the reference to the created action.

Both types open the same form to request an import

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 21



User guide

Below is reported the field:
● Action name: it will be set as action on openwhisk if the upload successfully.
● Use external registry: in case the image to be uploaded is external from physics

environments (es. DockerHub)
● Public registry: in case the image is stored in a public registry, if it is checked the

section Credential will be hidden.
● Registry: the registry of the external image.
● Repository: the repository of the external image.
● Docker image: the name of the image
● Version: the version of the image to be imported
● Use credential: in case of unchecked the user can set the username and

password with a description that jenkins can use to retrieve the image, in this
case username and password is stored in jenkins and it was encrypted. After the
first creation the credentials can be reused for the next import by checking the
box Use credentials and selecting the credentials by the Description.

After the filling of the form the user can press the button Create to start the pipeline.
After the start the Design Environment reloads the user imported images where the last
one is present with the status of the pipeline.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 22



User guide

The imported image is stored by the user, so the same image:version will not conflict
with the imported by another user, but you cannot have a same image:version associated
to two your actions; if you try to add a new action that points to an image you are
already using, the system will ask you if you want proceed, if you accept, the previous
action will be canceled and it will be flagged with the yellow icon.

EXPORTS
In this section you can export in a zip file your Node-RED subflow, to share it to other
users or to upload on npm.

In the main section you will see the list of your subflow and if you expand the
description are inserted in Node-RED.

With the Export button you can request the download in a zip file of the subflow. In the
following chapter is described how to publish the subflow to npm.

Preparatory work

Before exporting the subflow we need to include information on the description of the

node as shown in Figure 23, since a number of these fields are mandatory for the

package creation. Finally, a set of files is created that is downloaded from the DE and

contains all the main files of our node (README, etc.) as exported from the subflow

definition, as well as the code files, that can be installed through a typical npm install

command.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 23



User guide

Final export process to npm and Node-RED repos

In order to publish in the npm repository, from the previous folder generated by the DE

we can push the node on npm, following the inclusion of the desired npm account:

npm adduser

Then we can publish the node folder contents on npm through the:

npm publish

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 24



User guide

For adding in the Node-RED node repository, in order for it to be also available for

installation directly (including all its dependencies) from the Node-RED main palette

environment, we also need to register it through the Node-RED site4 and add the npm

module name. This declares the node in the Node-RED community repository.

Following that step, the contribution is now packaged as a Node-RED node and can be

found directly from the built-in palette management functionality of Node-RED.

4 Node addition in Node-RED repository: https://flows.nodered.org/add/node

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 25



User guide

In our case it was also added in a specific collection that is organized by PHYSICS

specifically for nodes5 and is different than the one for the subflows6.

This way of publishing (NPM and Node-RED node) also allows us to keep track of

usages, comments etc. for our node. Thus, it is a very good way for reusability of the

results as well as statistics of usage of a node artifact. It can also be linked to a GitHub

repository, in which the testers or users can interact in the form of issues etc.

APPLICATION GRAPHS

In the previous sections, the functions created are deployed as test versions for a given
flow. Thus the developer may create multiple versions and progressively add the
functionality needed. The deployment of the test functions in this case takes place in the
default test cluster. However, once the implementation of the functions is finalized and
tested, the developer can proceed with grouping them in relevant function groups
(application graphs), that are managed together by the PHYSICS platform. By doing so,
the developer may exploit the advanced features of the latter, such as optimized
placement across multiple clusters, annotation enrichment and management.

.

6 PHYSICS Flows collection: https://flows.nodered.org/collection/HXSkA2JJLcGA

5 PHYSICS node collection on Node-RED repository, available at:
https://flows.nodered.org/collection/9C3h7Hnru943

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 26



User guide

Create a new Application Graph

To create a new graph you can use the plus button on the rail menu that will open a
modal for the creation of the graph.

Where you can grab your local flow from the left to the right to create your graph. When
you are complete you can request the creation with the button Create.
In the creation it will use the the image indicated under the Flow name, if the flow
haven’t an image, the system before send the request to the semantic extractor, made a
build of the flow; in this case you will see, in the main section, the Graph Draft button
that report all your building flow started for the graph creation.

Once created, the app graph is passed through the semantic processing and submitted to
the platform services of PHYSICS for the deployment of the formal version of the
functions. Created functions are deployed based on the flow name (without the version
id included in a typical test run), compensated by the application id (as package name).
In the example below, one of the finalized deployed functions endpoint is as follows:
https://openwhisk.apps.ocphub.physics-faas.eu/api/v1/namespaces/guest/actions
/app9/QC2

For the final deployment, the user needs also to push the Deploy button in the Graphs
panel.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 27

https://openwhisk.apps.ocphub.physics-faas.eu/api/v1/namespaces/guest/actions/app9/QC2
https://openwhisk.apps.ocphub.physics-faas.eu/api/v1/namespaces/guest/actions/app9/QC2


User guide

Inclusion of an imported image to an Application Graph

In order to include a manually imported image to an application graph, the developer
needs to go through a stage of declaring it to the framework.After importing the image
from the DE functionality, the main intention is to use it in the context of a PHYSICS
application, thus to include it in a collection of flows and functions to be deployed at the
typical PHYSICS production environment.

However, given that this function has not followed the typical stages of a PHYSICS
function, a relevant declaration process needs to be followed, including creating a
semantic annotation for this custom image used. In order to support this, the PHYSICS
DE provides a relevant semantic node, the “Custom Function Image Importer”. The user
needs to create a new flow in the DE, in which they will drag and drop that node and
populate it with the name of the custom image in the relevant field (Figure 45). The
name given to this flow will also be the name of the resulting function. In this flow they
can also include other needed annotations from the PHYSICS available ones (e.g. sizing,
locality etc.).

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 28



User guide

Finally, although there is no relevant function logic inside this flow, they need to build it
through the DE. The reason for this is that only built flows are allowed to be included in
an app graph in the next stage. So the system needs to have this build documented. Once
the flow is built it can then be added to a PHYSICS App like any other available flow.

LOG
With a click on the bar on bottom of the main, you can access your backend log.

With the bar you can resize if you grab it, or close if you click on it.
In the log is reported the time of the creation, the application and the function that made
it and a message. If the log have a payload it is reported under the message and it is
expandable with the arrow icon and copyable.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 29



User guide

FLOW UPDATE PROCESS

Provided pattern flows by the PHYSICS project may be periodically updated or
extended7. These updates may be a result of newly needed features, specific requests or
debugging and improved parameterization. In order to import the updated versions in
the environment, if the pattern is packaged as a node, this process is done through the
palette management of the environment. However, if the pattern is packaged as a
subflow or typical flow, then different variations of import may be performed.

Initially the JSON description of the pattern needs to be retrieved from the PHYSICS
collection on Node-RED repo and copied.

Then one can navigate in the Node-RED menu Import option, select it and paste the
contents of the updated flow.

7 PHYSICS Patterns Collection, Available at: https://flows.nodered.org/collection/HXSkA2JJLcGA

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 30

https://flows.nodered.org/collection/HXSkA2JJLcGA


User guide

If a previous version of the flows exists in the environment (it should), the user will get a
warning message for importing existing nodes.

By selecting the “View nodes” option, the user will get a relevant screen about
conflicting nodes . If they do not select the grey subflow in the Subflows section of
import, only the node reference will get imported, so the imported flow will use the
locally existing (previous) version of the subflow.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 31



User guide

If we select the SUBFLOW and REPLACE check box, the subflow is replaced across all
flows and the palette has only one instance of the subflow. This is a complete update of
the subflow across the entire environment (this and all other existing flows that may use
the subflow). If we don’t check “replace”, a new version is included in the palette (but
without differentiation in the name) and the subflows local versions are not replaced in
the previously existing flows. This is useful in case the developer has created some
modifications in the subflow local versions and wants to maintain them, while
importing the new version as well. For any new flow we can select whatever of the two
versions from the palette, although there is no differentiation in the name appearing in
the palette. This is in essence versioning of the subflow.

Given that this creates confusion afterwards, if we want the versioning option, we
should use the direct Import Copy option from the initial warning. This would result in
maintaining the current version of the subflow in existing flows and the new version in

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 32



User guide

the imported flow, while the new version will be clearly marked in the palette with a
new version number (2).

NODE-RED RELATED COMMON ERRORS

Subflow in Subflow

When there is a subflow inside another subflow in an imported flow, we need to have a
copy of the inner subflow in the main flow, since otherwise it is not recognized as a type
(the inner subflow definition is not exported in the flows file). So we either need to
ensure we have all the subflows in the typical node-red environment or the person who
shares the subflow needs to have an idle such inner subflow node in the shared flow for
definition purposes.

Memory considerations of invoked action

When using the exec node to launch a shell script, make sure to always print the 3rd
output of the exec node in Node-RED. In some cases, when the child process launched
fails, this is the only place where some logging information will be available. For
example, if the process consumes a lot of memory, ending up in being killed by K8S due
to memory size requirements, the 3rd output will indicate the reception of a 'SIGKILL'
signal. This information is not propagated neither by K8S nor by Openwhisk. If that
signal appears in the logs of the executed function, it means that the assigned memory is
too low. By increasing the amount of memory assigned to the action, the problem is
solved.

Size of output message
Ιf the output to be returned to Openwhisk is significant (e.g. logs from two cascading
functions) then the return from the flow fails without obvious reason. No warning or
event is issued at the Openwhisk or K8s level. You can detect that from the fact that right
before the final response node, and although everything seems ok up to then, your
Node-RED function runtime will stop (Stopping nodes and flows in Node-RED function
logs as shown below) without apparent reason and the function container will

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 33



User guide

disappear. In a successful execution the container should remain active (at the Started
flows or any follow-up printed message).

Subflow id not iterable
Any subflow needs to have at least one node inside it, even if it does not do anything. If
there is an error message such as “TypeError: groupedNodes[subflowId] is not iterable”,
this means that there is a subflow with no nodes in it. One can drag and drop one
comment node in the relevant subflow in order to resolve this. Such nodes may exist
especially in the case of semantic nodes, if the PHYSICS user needs to somehow extend
the list of key/value annotations that are passed to the semantic layer but without the
need for a function logic inside the subflow.

Multiple /run Endpoints in Node-RED

Given that the main Openwhisk function interface dictates the need to have a POST /run
interface, all the created flows in the environment will need to include one. The problem
is that there can be only one REST endpoint with the same name in the Node-RED server
on which the DE editor is based. Thus if someone tries to test a new flow locally (inside
the Node-RED environment), the test call will actually be sent to the first flow that has
been created with this endpoint. Hence it is advised to change the name of this endpoint
for local testing needs (e.g. /run2) and then switch it back to /run prior to building the
flow.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 34



User guide

PARALLELIZATION STRATEGIES

The PHYSICS environment provides a number of ways through which the developer can
implement parallelization strategies. The selection of a strategy depends on the specifics
of a function, taking into account among other things the typical function execution time
(to avoid timeouts), the computational characteristics of a function (cpu intensive
versus i/o wait intensive) etc.

This guide aims to indicate common means through which such a parallelization may be
performed, exploiting the FaaS concepts as well as the tools provided by PHYSICS. As an
example, the PHYSICS Smart Agriculture use case is presented, that includes 3 different
parts. An experiment creation stage (not parallelizable) as well as a (parallelizable)
calibration stage that takes as inputs the combinations of the experiment creation in
order to simulate the behavior of the agricultural system. Following, a number of
possibilities are portrayed.

Single Function Pipeline

In this case, all the stages are included in a single Node-RED flow, executed as a function.
The parallelization in this case relates to multiple single functions that can be invoked,
i.e. splitting externally one large experiment into multiple smaller ones and triggering
one function for each.

This way exploits the inherent parallelism of FaaS but also introduces a risk of timeouts
since all the operations are included in one single function.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 35



User guide

Single Function Multi-process Pipeline (Intra-container parallelism)

In this case, all the stages are included in a single Node-RED flow, executed as a function
but the flow includes the SplitJoin Multiple pattern configured with the local
multiprocess option.

The parallelization in this case extends the previous scope and includes multiple
spawned processes within the same container. Thus it aims to replicate the behavior of
OpenMP-type of parallelism. Each calibrator script receives a subset of the input
experiment and undertakes its completion. The SJmultiple joins the answers on
completion of all Calibrators and proceeds to the next stage. This is especially useful
when the main calibration logic is not only cpu-intensive but also has blocking intervals.
If this logic is only cpu-intesive, then it is possible that this way will not be very
beneficial due to task switching and cache miss phenomena.

Orchestrating Function-Worker Function (Inter-container parallelism)

A third option is a combination of an Orchestrating Function that undertakes the main
workflow and a Worker Function, multiple instances of which are spawned in order to
simulate faster the experiment combinations. This enables an MPI-style parallelism, in
which containers can be spawned across the available cluster. In this case the SJ node
needs to be configured with the FaaS option.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 36



User guide

Another similar option in this case is to have a generic SJmultiple function. The
parameterization and abstract behaviour of the PHYSICS SJ pattern enables the creation
of such an abstract function. This means that this function may be reused across
different use cases and thus reduce the complexity of the flows.

Orchestrating Server-Function Implementations (Inter-container
parallelism)

The next strategy involves a combination between a server-based orchestrator and a
number of functions that are used to implement the main logic. The main benefit of this
approach is that we are not constrained by the SJ function timeouts in case of large
experiments. The only limitation from a timeout point of view is the one for the base
calibrator function. But this is easily configured through reducing the number of inputs
assigned to each worker through the split size parameter of the SJ pattern. On the other
hand, one needs to have a server running continuously for the orchestrator. In the case
of the PHYSICS Smart Agriculture use case, this server is already running at the edge
(Raspberry Pi) in order to collect the data. So it is neutral from a cost point of view to
add a lightweight orchestrator flow for managing cloud-based simulations.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 37



User guide

Hybrid Parallelism (Inter and Intra-container parallelism)

The last case is a combination of the above strategies. In that sense, one can select which
parts are server-based and which function-based, but the main difference is also the
combination of parallelisms. So one can use a first level of SJ (with the FaaS option) to
parallelize between different containers and then a second level of the SJ (with the
multiprocess option) for multiple processes inside each container.

DEBUGGING STRATEGIES

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 38



User guide

A number of possibilities exist for the developer to debug their flows in the PHYSICS
environment. In the previous sections a number of features were shown, including error
catching in the main skeleton flow, log and test details in the according tabs etc.

In order to support a more fine grained and detailed analysis of the flow execution,
PHYSICS provides two helper flows in order to capture both functional and non
functional issues.

Functional Flow Testing

The functional flow testing is supported by the json-logic node, created by the PHYSICS
project8. Through this, the developer may insert functional checkpoints within a flow
and perform a very fine grained root cause analysis for an error. An example appears in
the following flow.

In this case we expect that after the first function, the message should include a variable
“name” in the message payload. Thus if the message includes this, the test is passed, if
not it has failed and the results are forwarded to an external logging service. Similarly to
this, the remaining checkpoints are checked if the previous ones are passed and a
detailed report is produced.

8 https://flows.nodered.org/node/node-red-contrib-json-logic/in/9C3h7Hnru943

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 39

https://flows.nodered.org/node/node-red-contrib-json-logic/in/9C3h7Hnru943


User guide

If this needs to be applied in an Openwhisk skeleton function template, we need to wait
for the external logging process to finish before returning, in order to ensure proper
logging. But in this case we need to preserve whatever msg.payload is before the usage
of the external logging client, since the latter may overwrite the msg.payload that is
intended to be delivered to the invoker. Thus the aforementioned flow may be
transformed as follows.

Non-Functional Flow Testing

For the non-functional (performance) analysis, the intra-function monitor node can be
used in order to insert performance measurement checkpoints within a flow. In this case

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 40



User guide

the developer can annotate differences between the needed checkpoints and receive in
the end a detailed performance report.

Similarly to the Functional Testing, the logging can then be directed to an external
logging service and included in the Openwhisk function template.

This project has received funding from the European Union’s horizon 2020
research and innovation programme under grant agreement no 101017047 41


